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Abstract - This paper presents design of control systems for a group of quadrotors performing formation flight. The system has been presented into two 
interconnected subsystems. The first one representing the under-actuated subsystem gives the dynamic relation of the altitude and attitude. The second 
fully-actuated subsystem gives the dynamics of the horizontal position. To design motion control system, PID controller, active disturbance rejection 
(ADRC) controller and back stepping control architecture are designed and presented. Extended state observer (ESO) technique has been studied in 
order to eliminate the disturbances. The performances measure of the control architectures are computed to compare the presented control architectures 
more accurately. 

Index Terms — Swarm Quadrotors, Active Disturbance Rejection Control, Extended State Observer, Back Stepping Control   

——————————      —————————— 

1 INTRODUCTION                                                                     

quadrotor or quadcopter is a rotary wing unmanned 

aerial vehicle with four rotors placed on the ends of a two 

bars cross structure. Its flight operation is controlled by varying 

the rotational speeds of each rotor. The quadrotor swarms are 

multiple quadrotors which are employed to accomplish a 

common task.  

Swarm quadrotors has took an important part of the recent 

researches. For recent surveys on this subject, some techniques 

such as feedback linearization, nonlinear optimal control, back 

stepping control , sliding mode control and classic PID have 

been presented to achieve this application. Study [1], 

investigates the formation control problems for quadrotor 

swarm systems. A quadrotor is modeled dynamically as a 

point-mass system by double integrator. To achieve the desired 

time-varying formation, a consensus based formation 

architecture is presented. A new scheme for trajectory tracking 

of swarm quadrotors under a centralized leader-followers 

formation strategy is proposed in the article [2]. First, a double 

loop control structure based on the linear quadratic regulator is 

presented to control the horizontal position and stabilize the 

attitude. Then sliding mode control approach is employed to 

leader-followers formation. Feedback linearization with 

dynamic extension has been used to develop of a nonlinear 

position controller for a quadrotor aircraft in [3]. In another 

survey [4], a nonlinear optimal control scheme has been 

proposed to autonomous flight of quadrotors. The control 

system consists of a nonlinear model predictive controller and 

a nonlinear disturbance observer. Integral back stepping 

control approach has been described to full control of a 

quadrotor in [5]. The author in [6] have designed and presented 

a controller based on the classic scheme of PID control, which 

aims to regulate the posture of a six degree-of-freedom 

quadrotor.  

The other main issue in this regard is the uncertainties, which 

are universal in practice and of course in our system. They 

usually originate from two sources: internal (parameter or 

structure) uncertainty and external (disturbance) uncertainty. 

Lots of control methods have been proposed in literature 

centering on this issue, such as the widely used PID control, 

adaptive control, robust control, etc. What’s more, many 

disturbance estimating techniques appeared, such as 

disturbance observer (DOB), active disturbance rejection 

controller (ADRC), extended state observer (ESO) and etc. The 

recently developed sliding mode control driven by sliding 

mode disturbance observer approach is used to design a robust 

flight controller for a small quadrotor vehicle in [7]. Ref [8] 

employs a nonlinear disturbance observer to design a robust 

trajectory tracking controller for quadrotors. Finally an 

extended observer is designed and presented in [9] to estimate 

the disturbance in order to attitude control of a quadrotor 

aircraft.  

In this paper, designing of flight control systems for swarm 

quadrotors are studied. The quadrotor dynamics is presented 

into two interconnected subsystems. The first under-actuated 

subsystem gives the dynamics of the vertical position with the 

yaw, pitch and roll angles, and the second fully-actuated 

subsystem gives the dynamics of the horizontal position. To 

design motion control system, two methodologies are 

presented: classic PID controller and active disturbance 

rejection controller (ADRC) along with back stepping control 

architecture. Ability of extended state observer (ESO) to 

eliminate the external disturbances technique are evaluated. To 

compare the behavior of both methodologies, the performances 

measure of the control architectures are extracted. These 

techniques and contributions, reveal novelties for the control 

system design of swarm quadrotors in the theoretical domain. 

2 QUADROTOR DYNAMIC MODEL 

The dynamic model of a quadrotor represents its motion 

mathematically in some equations of motions. The governing 

equation of motions, have been presented in many works [1], 

[3], [4], [5], [6]. This model constitutes the basis for system 

analysis and control. The Euler or attitude angles, (Roll, Pitch, 

and Yaw) and the Cartesian coordinate are illustrated in figure 

1, which represents the schematic of employed quadrotor. Two 
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interconnected subsystems presents the quadrotor dynamics. 

The first under-actuated subsystem gives the dynamics of the 

altitude with the Euler angles as the equations (1-4). The second 

fully-actuated subsystem gives the dynamics of the horizontal 

position, as the equations (5-6). In these equations, 𝐿 is the 

distance between each rotor and center of the quadrotor, which 

places on the origin of the coordinate system. 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are the 

inertias of the quadrotor in Cartesian coordinates. Also 

𝑢1, 𝑢2, 𝑢3, 𝑢4 are roll, pitch, yaw and altitude control inputs 

respectively. As it is seen, the whole system is an under-

actuated system [10] because it has six outputs while it has only 

four inputs. 
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𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛹+𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛹
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𝑚
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3 CONTROLLER DESIGN 

In order to design motion or trajectory control system, two 

methodologies have been presented. In the first methodology, 

a classic PID controller is employed to achieve the desired 

trajectory, and in the second methodology, active disturbance 

rejection controller (ADRC) along with back stepping control 

architecture are designed to achieve the aim. It is worth 

mentioning that, the desired trajectory is traversed by changing 

of just only the roll and pitch angles of the quadrotors. In other 

words, the yaw angle is always zero, which means the 

quadrotor heading remains always parallel to the positive x-

axis. The comparison of the designed controllers in the first and 

second methodologies is accomplished based on the 

performances measures presented in [11] as illustrated in the 

equations (7-10). In these equations, the error signal is the 

difference between the position reference input and measured 

position in x, y and z axes. The integral square error (ISE) 

represents the error energy, integral absolute error (IAE) 

determines the cumulative error, integral of time weighted 

absolute error (ITAE) displays the steady-state error, and the 

root mean square error (RMSE) represents the standard 

deviation of the errors. 

𝐼𝑆𝐸 = ∫ 𝑒2𝑑𝑡                                             (7) 

𝐼𝐴𝐸 = ∫|𝑒|𝑑𝑡                                             (8) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. |𝑒|𝑑𝑡                                         (9) 

𝑅𝑀𝑆𝐸 = ∫
𝑒2

𝑛
𝑑𝑡                                         (10)             

3.1 First Control Methodology 

In the first methodology, employing a classic PID controller, the 

Euler angle outputs of the dynamic system is applied to the 

horizontal dynamics to track the given horizontal position 

references. The control schematic of this methodology is 

illustrated in figure 2. As mentioned, the yaw angle is always 

zero, hence the horizontal equation of motions will be as the 

equations (11-12). The horizontal position references, 𝑅𝑥 

and 𝑅𝑦, are tracked by changing roll and pitch angles, and the 

vertical position reference 𝑅𝑧 is tracked by the produced vertical 

speed control input of the corresponding PID controller. These 

control inputs can be expressed as the equations (13-16). 

�̈� =
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃

𝑚
𝑢4                                   (11) 

�̈� = −
𝑠𝑖𝑛𝜑

𝑚
𝑢4                                     (12) 

𝑢1 = 𝑃𝐼𝐷(𝑅𝑥 − 𝑥)                                (13) 

𝑢2 = 𝑃𝐼𝐷(𝑅𝑦 − 𝑦)                               (14) 

𝑢3 = 0                                         (15) 

𝑢4 = 𝑃𝐼𝐷(𝑅𝑧 − 𝑧)                               (16) 

 

 

 

 

 

 

3.2 Second Control Methodology 

 

In the second methodology, back stepping control architecture 

is designed to achieve the desired trajectory. In addition, 

instead of a classic PID controller, an active disturbance 

rejection controller (ADRC) is employed to produce the 

corresponding control inputs. This type of controller is capable 

of eliminating the effect of all uncertain forces including the 

system parametric uncertainties and external disturbances. The 

control schematic of this methodology is illustrated in figure 3. 
 
 

 

Fig. 1. Schematic of a Quadrotor with Euler Angles 

 

 

Fig. 2. Control Schematic based on the First Control Methodology 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 11, Issue 8, August-2020                                              

ISSN 2229-5518                                                                                                                                                                                                                                                  1056  

  

IJSER © 2020 

http://www.ijser.org 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

3.2.1 Active Disturbance Rejection Controller Design   

An active disturbance rejection controller (ADRC) consists of 
two main components: PD controller and Extended State 
Observer (ESO). This controller can successfully track the 
reference signal while rejecting all the parametric uncertainties 

and external disturbances. Schematic of ADRC controller for 

the horizontal and vertical motions dynamics is displayed in 

figure 4. 

 

 

 

 

 

 

 

 

 

 

To design this observer for roll, pitch, yaw and altitude motions 
employing the equations (1-4), the dynamics of the observers 
should be extracted properly. Here the design procedure for 
roll dynamics is described, based on the equation (17). In this 
equation D𝜑 is the external disturbance effecting on the roll 

dynamics. The effect of the external disturbance and the model 
parametric uncertainties is considered as a new state "x2". 
Equation (22) represents the observer dynamics. In the equation 
(23), "ω0" is the observer bandwidth, which can be derived by 
bandwidth parameterization as presented in the reference [12]. 
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𝐼𝑦−𝐼𝑧

𝐼𝑥
�̇��̇�                    (18) 

�̇�1 = 𝑥2 + 𝑏1𝑢1                                   (19) 

�̇�2 = ℎ ≈ 0                                        (20) 

[
�̇�1

�̇�2
] = [

𝑥2

ℎ
] + [

𝑏1

0
] ∙ 𝑢1                            (21) 

[
�̇�1

�̇�2

] = [
𝑥2

0
] + [

𝑏1

0
] ∙ 𝑢 + 𝐿𝜑 ∙ (𝑥1 − 𝑥1)              (22) 

𝐿𝜑 = [2𝜔0 𝜔0
2]                                  (23) 

The same procedure can be accomplished for pitch and altitude 

motions dynamics to design corresponding observers. But there 

is yet a problem in altitude dynamics presented in the equation 

(4). Since the coefficient of control input is a function of the 

states and not a constant value, so to solve this problem 

feedback linearization is applied. In other words we define the 

control input of altitude as below equation (24). 

𝑢4 = (𝑔 − 𝑅𝑧)
𝑚

𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃
                           (24) 

3.2.2 Back-Stepping Controller Design 

Back stepping control is employed to stabilize the system. This 

technique is useful when some states are controlled through 

other states [13], [14]. The main objective is to design a 

controller ensuring that the horizontal position tracks the 

desired trajectory asymptotically. The design methodology is 

based on the Lyapunov stability theory.  

In horizontal motion dynamics (equations 5-6), we have a 

system that can be written as �̇� = 𝐴 ∙ 𝑥 + 𝐵(𝑢) ∙ 𝑢. Our 𝐵 matrix 

is a function of 𝑢, but what we need is 𝐴 matrix, which is a 

constant matrix. As mentioned in reference book [14], a linear 

time invariant (LTI) system of the form �̇� = 𝐴 ∙ 𝑥 can be 

considered in order to study the stability situation. Based on 

theorem 3.6 in this book, a necessary and sufficient condition 

for an LTl system to be strictly stable is that, for any symmetric 

positive definite matrix 𝑄, the unique matrix 𝑃 solution of the 

Lyapunov equation be symmetric positive definite. This theorem 

shows that any positive definite matrix 𝑄 can be used to 

determine the stability of a linear system. A simple choice of 𝑄 

is the identity matrix. By considering a quadratic Lyapunov 

function candidate as 𝑉 = 𝑥𝑇𝑄𝑥, and differentiating the 

positive definite function 𝑉 along the system trajectory yields 

another quadratic form as the equation (25). The corresponding  

𝑃 matrix in our horizontal dynamics is extracted presented in 

(26), which is positive definite, and therefore our position 

control system is globally asymptotically stable. 

�̇� = �̇�𝑇𝑄𝑥 + 𝑥𝑇𝑄�̇� = 𝑥𝑇𝑃𝑥   ,   𝑃 = 𝐴𝑇𝑄 + 𝑄𝐴            (25) 

𝑃 = [

0 1 0 0
1 0 0 0
0
0

0
0

0
1

1
0

]                                    (26) 

In order to design this controller for horizontal motion 

dynamics, and extract the corresponding control inputs, the 

below described procedure is implemented for x- axis 

dynamics. 

 

Fig. 4. Schematic of ADRC Controller 

 

 

Fig. 3. Control Schematic based on the Second Control Methodology 
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�̇� = 𝑑𝑥1 = 𝑥2                                      (27) 

𝑑𝑥2 =
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛹+𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛹

𝑚
𝑢4                      (28) 

𝑒1 = 𝑅𝑥 − 𝑥 → 𝑒1̇ = 𝑅�̇� − 𝑥2                       (29) 

If 𝑥2 were the control input, by selecting 𝑥2 = 𝑐1𝑒1 + 𝑅�̇� we will 

have 𝑒1̇ = −𝑐1𝑒1 and it guaranties exponential convergence of 

the error to zero. Here 𝑐1 determines how fast the error 

converges to zero. Now, let consider the reference value for 𝑥2 

be as the equation (30), as if it were a virtual control input, 

where 𝑐1 and 𝜆1 are positive constants. 

𝑅𝑥2
= 𝑐1𝑒1 + 𝑅�̇� + 𝜆1𝐸1   ,   𝐸1 = ∫ 𝑒1(𝜏)

𝑡

0
𝑑𝜏            (30) 

𝑒2 = 𝑅𝑥2
− 𝑥2 = 𝑐1𝑒1 + 𝑅�̇� + 𝜆1𝐸1 − 𝑥2                (31) 

→ 𝑥2 = 𝑐1𝑒1 + 𝑅�̇� + 𝜆1𝐸1 − 𝑒2                        (32) 

𝑒1̇ = 𝑅�̇� − 𝑥2 → 𝑒1̇ = −𝑐1𝑒1 − 𝜆1𝐸1 + 𝑒2              (33) 

𝑒2̇ = 𝑅𝑥2
̇ − 𝑥2 = 𝑐1𝑒1̇ + 𝑅�̈� + 𝜆1𝑒1 − 𝑥2̇              (34) 

→ 𝑒2̇ = 𝑐1(−𝑐1𝑒1 − 𝜆1𝐸1 + 𝑒2) + 𝑅�̈� + 𝜆1𝑒1 − 𝑥2̇        (35) 

Let the desired dynamics for 𝑒2 is given as 

𝑒2̇ = −𝑐2𝑒2 − 𝑒1, where 𝑐2 is a positive constant, so we will have: 

𝑒2̇ = −𝑐2𝑒2 − 𝑒1 = 𝑐1(−𝑐1𝑒1 − 𝜆1𝐸1 + 𝑒2) + 𝑅�̈� + 𝜆1𝑒1 −

                                
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛹+𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛹

𝑚
𝑢4                                      (36) 

In horizontal position control system, because the outputs track 

𝑅𝑥  by changing just only in roll and pitch angles (yaw angle is 

always zero), so we can consider 𝑢𝐵1 and 𝑢𝐵2 as the control 

inputs of the horizontal dynamics as: 

(1 + 𝜆1 − 𝑐1
2)𝑒1 + (𝑐1 + 𝑐2)𝑒2 − 𝑐1𝜆1𝐸1 + 𝑅�̈� =

𝑐𝑜𝑠𝑢𝐵1sin 𝑢𝐵2

𝑚
𝑢4 

(37) 

Similarly it is extracted the following equation for y-axis 

dynamics: 

(1 + 𝜆2 − 𝑐3
2)𝑒3 + (𝑐3 + 𝑐4)𝑒4 − 𝑐3𝜆2𝐸2 + 𝑅�̈� = −

𝑠𝑖𝑛 𝑢𝐵1

𝑚
𝑢4 

(38)
 

Then our needed control inputs are extracted as the below 

equations (39-40), based on the definitions presented in the 

equations (41-43). Here by tuning the positive parameters 𝑐1 

and 𝑐2 , the desired performance is expected. As mentioned, 

𝑐1 and 𝑐2 determine how fast 𝑥 → 𝑅𝑥 and 𝑦 → 𝑅𝑦. 

𝑢𝐵1 = sin−1(
𝑚((1 + 𝜆2 − 𝑐3

2)𝑒3 + (𝑐3 + 𝑐4)𝑒4 − 𝑐3𝜆2𝐸2 + 𝑅�̈�)

𝑢4

) 

(39) 

𝑢𝐵2 = sin−1(
−𝑚((1 + 𝜆1 − 𝑐1

2)𝑒1 + (𝑐1 + 𝑐2)𝑒2 − 𝑐1𝜆1𝐸1 + 𝑅�̈�)

𝑢4 cos 𝑢𝐵1

) 

(40) 

𝑒1 = 𝑅𝑥 − 𝑥1   ,   𝑒2 = 𝑅�̇� − 𝑥2   ,   𝐸1 = ∫ 𝑒1(𝜏)
𝑡

0
𝑑𝜏        (41) 

𝑒3 = 𝑅𝑦 − 𝑥3  ,   𝑒4 = 𝑅�̇� − 𝑥4   ,   𝐸2 = ∫ 𝑒3(𝜏)
𝑡

0
𝑑𝜏        (42) 

𝑐2 =
𝑐1

2+1

𝑐1
   ,   𝜆1 = 𝑐1

2   ,   𝑐4 =
𝑐3

2+1

𝑐3
   ,   𝜆2 = 𝑐3

2         (43) 

4 EXPERIMENTS AND RESULTS 

To evaluate the behaviors of the controllers of the two 

presented control methodologies, the desired trajectory to track 

is considered as the follow path. Three swarm quadrotors place 

3 meters away from each other on the corner of an equilateral 

triangle. That means they will be on the points at the Cartesian 

coordinates which is shown in figure 3. The quadrotors should 

start from the mentioned points and after traverse the designed 

trajectories come back again to these initial points. 

(0,0,0) → (0,0,10) →  (10,0,10) →  (10,1,10) → 

(0,10,10) → (0,0,10) → (0,0,0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The behaviors of the controllers presented in first methodology 

is evaluated. In this control architecture, applying excessive 

external disturbance on the system, leads the controllers to go 

unstable. Figure 5, illustrate the position reference in three axes, 

measured attitude and position of the leader, figure 6, 

demonstrate the measured position in three axes of three 

swarm quadrotors, and figure 7, display the traversed trajectory 

by the swarm quadrotors employing the first methodology. As 

it is clearly seen, the measured horizontal and vertical positions 

can successfully track the given reference inputs. 

Then the behaviors of the controllers presented in second 

methodology is evaluated. In this case by applying a 

disturbance signal on the attitude and altitude dynamics shown 

in the figure 8, the ADRC controller ability to eliminate it is 

studied. Unlike the applied disturbances in most of existing 

literature, the disturbance considered in this study is time 

varying and continuous. Figure 9, illustrate the position 

reference in three axes, measured attitude and position of the 

 

Fig. 3. Placement of Swarm Quadrotors 
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leader, figure 10, demonstrate the measured position in three 

axes of three swarm quadrotors, and figure 11, display the 

traversed trajectory by the swarm quadrotors employing the 

second methodology. Despite having disturbance on the 

dynamics, the measured horizontal and vertical positions can 

successfully track the given reference inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig. 11. Traversed trajectory of Swarm Quadrotors, Second 
Approach 

 

 

Fig. 10. Positions of Swarm Quadrotors, Second Control Approach 

 

 

Fig. 9. Leader Position Reference, Attitude and Position Outputs, 
Second Control Approach 

 

 

 

Fig. 5. Leader Position Reference, Attitude and Position Outputs, 
First Control Approach 

 

 

Fig. 6. Positions of Swarm Quadrotors, First Control Approach 

 

 

Fig. 7. Traversed trajectory of Swarm Quadrotors, 
First Control Approach 

 

 

Fig. 7. Traversed trajectory of Swarm Quadrotors, 
Second Control Approach 
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In order to compare the behavior of the controllers in the first 

and second methodologies, the given reference position input, 

and measured positions in x, y and z axes of the leader 

quadrotor are extracted and presented in the figures 12-14. As 

a visual result, we can see in each methodology, the output 

signals can successfully track the input signals. To compare 

them more carefully, their performances measures are 

calculated as displayed in the table 1. Based on these values, we 

can conclude some notable issues. In compare with the first 

methodology, the second methodology has smaller error 

energy, gives the nearest response with respect to the applied 

reference, and has smaller steady-state error. Since in most of 

cases, the performance measures of the second methodology is 

smaller than the first methodology, it can be concluded that the 

back-stepping control along with an ADRC is more accurate in 

tracking the reference input of both horizontal and vertical 

dynamics. These preference is realized though annoying 

applied disturbances. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

5 DISCUSSION AND CONCLUSION 

Control architectures comprising of classic PID controller, 

active disturbance rejection controller (ADRC) along with back 

stepping control architecture were designed and presented to 

drive the swarm quadrotors to a desired trajectory. Also a 

proper extended state observer (ESO) was designed to 

eliminate the external disturbances effecting on the system. The 

simulation results showed the good performance of both 

proposed control methodologies. In other words, the horizontal 

and vertical positions can successfully track the given reference 

inputs. The excellent performance of the second control 

methodology comes with elimination of the applied external 

disturbance on the attitude and altitude dynamics. The 

performance of both architectures were compared employing 

the mathematical control measures. It was concluded, the back-

stepping control along with an ADRC is more accurate in 

tracking the desired reference input. 
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Fig. 14. Leader Position in z-axis, Reference Input, Outputs with 
First and Second Control Methodologies 

 

 

Fig. 12. Leader Position in x-axis, Reference Input, Outputs with 
First and Second Control Methodologies 

 

 

Fig. 13. Leader Position in y-axis, Reference Input, Outputs with 
First and Second Control Methodologies 
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